Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(4): 633-642, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498000

RESUMO

Aflatoxin B1 (AFB1) is a potent human liver carcinogen produced by certain molds, particularly Aspergillus flavus and Aspergillus parasiticus, which contaminate peanuts, corn, rice, cottonseed, and ground and tree nuts, principally in warm and humid climates. AFB1 undergoes bioactivation in the liver to produce AFB1-exo-8,9-epoxide, which forms the covalently bound cationic AFB1-N7-guanine (AFB1-N7-Gua) DNA adduct. This adduct is unstable and undergoes base-catalyzed opening of the guanine imidazolium ring to form two ring-opened diastereomeric 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy-aflatoxin B1 (AFB1-FapyGua) adducts. The AFB1 formamidopyrimidine (Fapy) adducts induce G → T transversion mutations and are likely responsible for the carcinogenic effects of AFB1. Quantitative liquid chromatography-mass spectrometry (LC-MS) methods have shown that AFB1-N7-Gua is eliminated in rodent and human urine, whereas ring-opened AFB1-FapyGua adducts persist in rodent liver. However, fresh frozen biopsy tissues are seldom available for biomonitoring AFB1 DNA adducts in humans, impeding research advances in this potent liver carcinogen. In contrast, formalin-fixed paraffin-embedded (FFPE) specimens used for histopathological analysis are often accessible for molecular studies. However, ensuring nucleic acid quality presents a challenge due to incomplete reversal of formalin-mediated DNA cross-links, which can preclude accurate quantitative measurements of DNA adducts. In this study, employing ion trap or high-resolution accurate Orbitrap mass spectrometry, we demonstrate that ring-opened AFB1-FapyGua adducts formed in AFB1-exposed newborn mice are stable to the formalin fixation and DNA de-cross-linking retrieval processes. The AFB1-FapyGua adducts can be detected at levels comparable to those in a match of fresh frozen liver. Orbitrap MS2 measurements can detect AFB1-FapyGua at a quantification limit of 4.0 adducts per 108 bases when only 0.8 µg of DNA is assayed on the column. Thus, our breakthrough DNA retrieval technology can be adapted to screen for AFB1 DNA adducts in FFPE human liver specimens from cohorts at risk of this potent liver carcinogen.


Assuntos
Aflatoxina B1 , Adutos de DNA , Camundongos , Humanos , Animais , Aflatoxina B1/química , Inclusão em Parafina , DNA/metabolismo , Carcinógenos/metabolismo , Espectrometria de Massas , Guanina , Formaldeído
2.
Biochemistry ; 63(6): 754-766, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38413007

RESUMO

Urea lesions in DNA arise from thymine glycol (Tg) or 8-oxo-dG; their genotoxicity is thought to arise in part due to their potential to accommodate the insertion of all four dNTPs during error-prone replication. Replication bypass with human DNA polymerase η (hPol η) confirmed that all four dNTPs were inserted opposite urea lesions but with purines exhibiting greater incorporation efficiency. X-ray crystal structures of ternary replication bypass complexes in the presence of Mg2+ ions with incoming dNTP analogs dAMPnPP, dCMPnPP, dGMPnPP, and dTMPnPP bound opposite urea lesions (hPol η·DNA·dNMPnPP complexes) revealed all were accommodated by hPol η. In each, the Watson-Crick face of the dNMPnPP was paired with the urea lesion, exploiting the ability of the amine and carbonyl groups of the urea to act as H-bond donors or acceptors, respectively. With incoming dAMPnPP or dGMPnPP, the distance between the imino nitrogen of urea and the N9 atoms of incoming dNMPnPP approximated the canonical distance of 9 Å in B-DNA. With incoming dCMPnPP or dTMPnPP, the corresponding distance of about 7 Å was less ideal. Improved base-stacking interactions were also observed with incoming purines vs pyrimidines. Nevertheless, in each instance, the α-phosphate of incoming dNMPnPPs was close to the 3'-hydroxyl group of the primer terminus, consistent with the catalysis of nucleotidyl transfer and the observation that all four nucleotides could be inserted opposite urea lesions. Preferential insertion of purines by hPol η may explain, in part, why the urea-directed spectrum of mutations arising from Tg vs 8-oxo-dG lesions differs.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA , Humanos , 8-Hidroxi-2'-Desoxiguanosina , DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , Replicação do DNA , Nucleotídeos , Adutos de DNA
3.
DNA Repair (Amst) ; 133: 103606, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039951

RESUMO

Mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]-anthracene-9,10-dione) is a clinically-relevant synthetic anthracenedione that functions as a topoisomerase II poison by trapping DNA double-strand break intermediates. Mitoxantrone binds to DNA via both stacking interactions with DNA bases and hydrogen bonding with the sugar-phosphate backbone. It has been shown that mitoxantrone inhibits apurinic/apyrimidinic (AP) endonuclease 1 (APE1)-catalyzed incision of DNA containing a tetrahydrofuran (THF) moiety and more recently, that mitoxantrone forms Schiff base conjugates at AP sites in DNA. In this study, mitoxantrone-mediated inhibition of APE1 at THF sites was shown to be consistent with preferential binding to, and thermal stabilization of DNA containing a THF site as compared to non-damaged DNA. Investigations into the properties of mitoxantrone at AP and 3' α,ß-unsaturated aldehyde sites demonstrated that in addition to being a potent inhibitor of APE1 at these biologically-relevant substrates (∼ 0.5 µM IC50 on AP site-containing DNA), mitoxantrone also incised AP site-containing DNA by catalyzing ß- and ß/δ-elimination reactions. The efficiency of these reactions to generate the 3' α,ß-unsaturated aldehyde and 3' phosphate products was modulated by DNA structure. Although these cell-free reactions revealed that mitoxantrone can generate 3' phosphates, cells lacking polynucleotide kinase phosphatase did not show increased sensitivity to mitoxantrone treatment. Consistent with its ability to inhibit APE1 activity on DNAs containing either an AP site or a 3' α,ß-unsaturated aldehyde, combined exposures to clinically-relevant concentrations of mitoxantrone and a small molecule APE1 inhibitor revealed additive cytotoxicity. These data suggest that in a cellular context, mitoxantrone may interfere with APE1 DNA repair functions.


Assuntos
DNA , Mitoxantrona , Mitoxantrona/farmacologia , DNA/metabolismo , Reparo do DNA , Aldeídos , Fosfatos , Endonucleases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
4.
Chem Res Toxicol ; 36(12): 1947-1960, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37989274

RESUMO

The genotoxic 3-(2-deoxy-ß-D-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) DNA lesion arises from endogenous exposures to base propenals generated by oxidative damage and from exposures to malondialdehyde (MDA), produced by lipid peroxidation. Once formed, M1dG may oxidize, in vivo, to 3-(2-deoxy-ß-D-erythropentofuranosyl)-pyrimido[1,2-f]purine-6,10(3H,5H)-dione (6-oxo-M1dG). The latter blocks DNA replication and is a substrate for error-prone mutagenic bypass by the Y-family DNA polymerase hpol η. To examine structural consequences of 6-oxo-M1dG damage in DNA, we conducted NMR studies of 6-oxo-M1dG incorporated site-specifically into 5' -d(C1A2T3X4A5T6G7A8C9G10C11T12)-3':5'-d(A13G14C15G16T17C18A19T20C21A22T23G24)-3' (X = 6-oxo-M1dG). NMR spectra afforded detailed resonance assignments. Chemical shift analyses revealed that nucleobase C21, complementary to 6-oxo-M1dG, was deshielded compared with the unmodified duplex. Sequential NOEs between 6-oxo-M1dG and A5 were disrupted, as well as NOEs between T20 and C21 in the complementary strand. The structure of the 6-oxo-M1dG modified DNA duplex was refined by using molecular dynamics (rMD) calculations restrained by NOE data. It revealed that 6-oxo-M1dG intercalated into the duplex and remained in the anti-conformation about the glycosyl bond. The complementary cytosine C21 extruded into the major groove, accommodating the intercalated 6-oxo-M1dG. The 6-oxo-M1dG H7 and H8 protons faced toward the major groove, while the 6-oxo-M1dG imidazole proton H2 faced into the major groove. Structural perturbations to dsDNA were limited to the 6-oxo-M1dG damaged base pair and the flanking T3:A22 and A5:T20 base pairs. Both neighboring base pairs remained within the Watson-Crick hydrogen bonding contact. The 6-oxo-M1dG did not stack well with the 5'-neighboring base pair T3:A22 but showed improved stacking with the 3'-neighboring base pair A5:T20. Overall, the base-displaced intercalated structure was consistent with thermal destabilization of the 6-oxo-M1dG damaged DNA duplex; thermal melting temperature data showed a 15 °C decrease in Tm compared to the unmodified duplex. The structural consequences of 6-oxo-M1dG formation in DNA are evaluated in the context of the chemical biology of this lesion.


Assuntos
Adutos de DNA , DNA , DNA/química , Purinas/química , Dano ao DNA , Conformação Molecular , Prótons , Conformação de Ácido Nucleico , Desoxiguanosina/química
5.
DNA Repair (Amst) ; 129: 103544, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517321

RESUMO

Nei-like glycosylase 1 (NEIL1) is a DNA repair enzyme that initiates the base excision repair (BER) pathway to cleanse the human genome of damage. The substrate specificity of NEIL1 includes several common base modifications formed under oxidative stress conditions, as well as the imidazole ring open adducts that are induced by alkylating agents following initial modification at N7 guanine. An example of the latter is the persistent and mutagenic 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adduct, resulting from the alkylating agent aflatoxin B1 (AFB1) exo-8-9-epoxide. Naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 are hypothesized to be associated with an increased risk for development of early-onset hepatocellular carcinoma (HCC), especially in environments with high exposures to aflatoxins and chronic inflammation from viral infections and alcohol consumption. Given that AFB1 exposures and hepatitis B viral (HBV) infections represent a major problem in the developing countries of sub-Saharan Africa, it is pertinent to study SNP NEIL1 variants that are present in this geographic region. In this investigation, we characterized the three most common NEIL1 variants found in this region: P321A, R323G, and I182M. Biochemical analyses were conducted to determine the proficiencies of these variants in initiating the repair of DNA lesions. Our data show that damage recognition and excision activities of P321A and R323G were near that of wild-type (WT) NEIL1 for both thymine glycol (ThyGly) and AFB1-FapyGua. The substrate specificities of these variants with respect to various oxidatively-induced base lesions were also similar to that of WT. In contrast, the I182M variant was unstable, such that it precipitated under a variety of conditions and underwent rapid inactivation at a biologically relevant temperature, with partial stabilization being observed in the presence of undamaged DNA. This study provides insight regarding the potential increased risk for early-onset HCC in human populations carrying the NEIL1 I182M variant.


Assuntos
Carcinoma Hepatocelular , DNA Glicosilases , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , DNA Glicosilases/metabolismo , Mutagênese , Nucleotídeos , Reparo do DNA
6.
Environ Mol Mutagen ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37303259

RESUMO

Dietary exposure to aflatoxin B1 (AFB1 ) is a recognized risk factor for developing hepatocellular carcinoma. The mutational signature of AFB1 is characterized by high-frequency base substitutions, predominantly G>T transversions, in a limited subset of trinucleotide sequences. The 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1 -FapyGua) has been implicated as the primary DNA lesion responsible for AFB1 -induced mutations. This study evaluated the mutagenic potential of AFB1 -FapyGua in four sequence contexts, including hot- and cold-spot sequences as apparent in the mutational signature. Vectors containing site-specific AFB1 -FapyGua lesions were replicated in primate cells and the products of replication were isolated and sequenced. Consistent with the role of AFB1 -FapyGua in AFB1 -induced mutagenesis, AFB1 -FapyGua was highly mutagenic in all four sequence contexts, causing G>T transversions and other base substitutions at frequencies of ~80%-90%. These data suggest that the unique mutational signature of AFB1 is not explained by sequence-dependent fidelity of replication past AFB1 -FapyGua lesions.

7.
ACS Omega ; 8(16): 14841-14854, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125130

RESUMO

Aflatoxin B1 (AFB1) exposure through contaminated food is a primary contributor to hepatocellular carcinogenesis worldwide. Hepatitis B viral infections in livers dramatically increase the carcinogenic potency of AFB1 exposures. Liver cytochrome P450 oxidizes AFB1 to the epoxide, which in turn reacts with N7-guanine in DNA, producing the cationic trans-8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 adduct (AFB1-N7-Gua). The opening of the imidazole ring of AFB1-N7-Gua under physiological conditions causes the formation of the cis- and trans-diastereomers of 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua). These adducts primarily lead to G → T mutations, with AFB1-FapyGua being significantly more mutagenic than AFB1-N7-Gua. The unequivocal identification and accurate quantification of these AFB1-Gua adducts as biomarkers are essential for a fundamental understanding and prevention of AFB1-induced hepatocellular carcinogenesis. Among a variety of analytical techniques used for this purpose, liquid chromatography-tandem mass spectrometry, with the use of the stable isotope-labeled analogues of AFB1-FapyGua and AFB1-N7-Gua as internal standards, provides the greatest accuracy and sensitivity. cis-AFB1-FapyGua-15N5, trans-AFB1-FapyGua-15N5, and AFB1-N7-Gua-15N5 have been synthesized and used successfully as internal standards. However, the availability of these standards from either academic institutions or commercial sources ceased to exist. Thus, quantitative genomic data regarding AFB1-induced DNA damage in animal models and humans remain challenging to obtain. Previously, AFB1-N7-Gua-15N5 was prepared by reacting AFB1-exo-8,9-epoxide with the uniformly 15N5-labeled DNA isolated from algae grown in a pure 15N-environment, followed by alkali treatment, resulting in the conversion of AFB1-N7-Gua-15N5 to AFB1-FapyGua-15N5. In the present work, we used a different and simpler approach to synthesize cis-AFB1-FapyGua-15N5, trans-AFB1-FapyGua-15N5, and AFB1-N7-Gua-15N5 from a partial double-stranded 11-mer Gua-15N5-labeled oligodeoxynucleotide, followed by isolation and purification. We also show the validation of these 15N5-labeled standards for the measurement of cis-AFB1-FapyGua, trans-AFB1-FapyGua, and AFB1-N7-Gua in DNA of livers of AFB1-treated mice.

8.
Nucleic Acids Res ; 51(8): 3754-3769, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014002

RESUMO

The N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and ß deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase. The structure of a complex between the active site unedited mutant CΔ100 P2G hNEIL1 (K242) glycosylase and double-stranded (ds) DNA containing a urea lesion reveals a pre-cleavage intermediate, in which the Gly2 N-terminal amine forms a conjugate with the deoxyribose C1' of the lesion, with the urea moiety remaining intact. This structure supports a proposed catalytic mechanism in which Glu3-mediated protonation of O4' facilitates attack at deoxyribose C1'. The deoxyribose is in the ring-opened configuration with the O4' oxygen protonated. The electron density of Lys242 suggests the 'residue 242-in conformation' associated with catalysis. This complex likely arises because the proton transfer steps involving Glu6 and Lys242 are hindered due to Glu6-mediated H-bonding with the Gly2 and the urea lesion. Consistent with crystallographic data, biochemical analyses show that the CΔ100 P2G hNEIL1 (K242) glycosylase exhibits a residual activity against urea-containing dsDNA.


Assuntos
DNA Glicosilases , Reparo do DNA , Desoxirribose , Ureia , Desoxirribose/química , DNA/química , Dano ao DNA , DNA Glicosilases/metabolismo , Humanos
9.
Chem Res Toxicol ; 35(10): 1903-1913, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35973057

RESUMO

O6-Methyl-2'-deoxyguanosine (O6-MeG) is one of the most common DNA lesions and arises as a consequence of both xenobiotic carcinogens and endogenous methylation by S-adenosylmethionine. O6-MeG frequently causes G-to-A mutations during DNA replication due to the misincorporation of dTTP and continued DNA synthesis. Efforts to detect DNA adducts such as O6-MeG, and to understand their impacts on DNA structure and function, have motivated the creation of nucleoside analogs with altered base moieties to afford a more favorable interaction with the adduct as compared to the unmodified nucleotide. Such analogs directed at O6-MeG include benzimidazolinone and benzimidazole nucleotides, as well as their extended π surface analogs naphthimidazolinone and napthimidazole derivatives. These analogs form a more stable pair with O6-MeG than with G, most likely due to a combination of H-bonding and stacking. While extending the π surface of the analogs enhances their performance as adduct-directed probes, the precise origins of the increased affinity between the synthetic analogs and O6-MeG remain unclear. To better understand relevant conformational and pairing properties, we used X-ray crystallography and analyzed the structures of the DNA duplexes with naphthimidazolinone inserted opposite G or O6-MeG. The structures reveal a complex interaction of the analog found either in an anti orientation and stacked inside the duplex, either above or below G or O6-MeG, or in a syn orientation and paired opposite G with formation of a single H-bond. The experimental structural data are consistent with the stabilizing effect of the synthetic analog observed in UV melting experiments and calculations and moreover reveal that the origin of these observations appears to be superior stacking between O6-MeG and the extended π system of the synthetic probe.


Assuntos
Adutos de DNA , Nucleosídeos , Benzimidazóis , Carcinógenos , DNA/química , Desoxiguanosina/análogos & derivados , Conformação de Ácido Nucleico , Nucleosídeos/química , Nucleotídeos , S-Adenosilmetionina , Xenobióticos
10.
Chem Res Toxicol ; 34(3): 901-911, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33595290

RESUMO

Dietary exposure to aflatoxins is a significant risk factor in the development of hepatocellular carcinomas. Following bioactivation by microsomal P450s, the reaction of aflatoxin B1 (AFB1) with guanine (Gua) in DNA leads to the formation of stable, imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adducts. In contrast to most base modifications that result in destabilization of the DNA duplex, the AFB1-FapyGua adduct increases the thermal stability of DNA via 5'-interface intercalation and base-stacking interactions. Although it was anticipated that this stabilization might make these lesions difficult to repair relative to helix distorting modifications, prior studies have shown that both the nucleotide and base excision repair pathways participate in the removal of the AFB1-FapyGua adduct. Specifically for base excision repair, we previously showed that the DNA glycosylase NEIL1 excises AFB1-FapyGua and catalyzes strand scission in both synthetic oligodeoxynucleotides and liver DNA of exposed mice. Since it is anticipated that error-prone replication bypass of unrepaired AFB1-FapyGua adducts contributes to cellular transformation and carcinogenesis, the structural and thermodynamic parameters that modulate the efficiencies of these repair pathways are of considerable interest. We hypothesized that the DNA sequence context in which the AFB1-FapyGua adduct is formed might modulate duplex stability and consequently alter the efficiencies of NEIL1-initiated repair. To address this hypothesis, site-specific AFB1-FapyGua adducts were synthesized in three sequence contexts, with the 5' neighbor nucleotide being varied. DNA structural stability analyses were conducted using UV absorbance- and NMR-based melting experiments. These data revealed differentials in thermal stabilities associated with the 5'-neighbor base pair. Single turnover kinetic analyses using the NEIL1 glycosylase demonstrated corresponding sequence-dependent differences in the repair of this adduct, such that there was an inverse correlation between the stabilization of the duplex and the efficiency of NEIL1-mediated catalysis.


Assuntos
Aflatoxina B1/metabolismo , Adutos de DNA/metabolismo , DNA Glicosilases/metabolismo , DNA/metabolismo , Guanina/metabolismo , Pirimidinas/metabolismo , Aflatoxina B1/química , Sequência de Bases , Biocatálise , DNA/química , Adutos de DNA/química , DNA Glicosilases/química , Guanina/química , Humanos , Estrutura Molecular , Pirimidinas/química
11.
Biochemistry ; 60(1): 41-52, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382597

RESUMO

Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and ß configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the ß configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.


Assuntos
Adenina/química , Aldeídos/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA , DNA/química , Reparo do DNA , Humanos , Conformação de Ácido Nucleico
12.
DNA Repair (Amst) ; 85: 102741, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733589

RESUMO

Pre-mRNA encoding human NEIL1 undergoes editing by adenosine deaminase ADAR1 that converts a single adenosine to inosine, and this conversion results in an amino acid change of lysine 242 to arginine. Previous investigations of the catalytic efficiencies of the two forms of the enzyme revealed differential release of thymine glycol (ThyGly) from synthetic oligodeoxynucleotides, with the unedited form, NEIL1 K242 being ≈30-fold more efficient than the edited NEIL1 K242R. In contrast, when these enzymes were reacted with oligodeoxynucleotides containing guanidinohydantoin or spiroiminohydantoin, the edited K242R form was ≈3-fold more efficient than the unedited NEIL1. However, no prior studies have investigated the efficiencies of these two forms of NEIL1 on either high-molecular weight DNA containing multiple oxidatively-induced base damages, or oligodeoxynucleotides containing a bulky alkylated formamidopyrimidine. To understand the extent of changes in substrate recognition, γ-irradiated calf thymus DNA was treated with either edited or unedited NEIL1 and the released DNA base lesions analyzed by gas chromatography-tandem mass spectrometry. Of all the measured DNA lesions, imidazole ring-opened 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) were preferentially released by both NEIL1 enzymes with K242R being ≈1.3 and 1.2-fold more efficient than K242 on excision of FapyAde and FapyGua, respectively. Consistent with the prior literature, large differences (≈7.5 to 12-fold) were measured in the excision of ThyGly from genomic DNA by the unedited versus edited NEIL1. In contrast, the edited NEIL1 was more efficient (≈3 to 5-fold) on release of 5-hydroxycytosine. Excision kinetics on DNA containing a site-specific aflatoxin B1-FapyGua adduct revealed an ≈1.4-fold higher rate by the unedited NEIL1. Molecular modeling provides insight into these differential substrate specificities. The results of this study and in particular, the comparison of substrate specificities of unedited and edited NEIL1 using biologically and clinically important base lesions, are critical for defining its role in preservation of genomic integrity.


Assuntos
Adenosina Desaminase/metabolismo , Substituição de Aminoácidos , Adutos de DNA/metabolismo , DNA Glicosilases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Domínio Catalítico , DNA Glicosilases/química , DNA Glicosilases/genética , Cromatografia Gasosa-Espectrometria de Massas , Edição de Genes , Humanos , Modelos Moleculares , Peso Molecular , Conformação Proteica , Especificidade por Substrato
13.
DNA Repair (Amst) ; 79: 32-39, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31100703

RESUMO

The combination of chronic dietary exposure to the fungal toxin, aflatoxin B1 (AFB1), and hepatitis B viral (HBV) infection is associated with an increased risk for early onset hepatocellular carcinomas (HCCs). An in-depth knowledge of the mechanisms driving carcinogenesis is critical for the identification of genetic risk factors affecting the susceptibility of individuals who are HBV infected and AFB1 exposed. AFB1-induced mutagenesis is characterized by G to T transversions. Hence, the DNA repair pathways that function on AFB1-induced DNA adducts or base damage from HBV-induced inflammation are anticipated to have a strong role in limiting carcinogenesis. These pathways define the mutagenic burden in the target tissues and ultimately limit cellular progression to cancer. Murine data have demonstrated that NEIL1 in the DNA base excision repair pathway was significantly more important than nucleotide excision repair relative to elevated risk for induction of HCCs. These data suggest that deficiencies in NEIL1 could contribute to the initiation of HCCs in humans. To investigate this hypothesis, publicly-available data on variant alleles of NEIL1 were analyzed and compared with genome sequencing data from HCC tissues derived from individuals residing in Qidong County (China). Three variant alleles were identified and the corresponding A51V, P68H, and G245R enzymes were characterized for glycosylase activity on genomic DNA containing a spectrum of oxidatively-induced base damage and an oligodeoxynucleotide containing a site-specific AFB1-formamidopyrimidine guanine adduct. Although the efficiency of the P68H variant was modestly decreased, the A51V and G245R variants showed nearly wild-type activities. Consistent with biochemical findings, molecular modeling of these variants demonstrated only slight local structural alterations. However, A51V was highly temperature sensitive suggesting that its biological activity would be greatly reduced. Overall, these studies have direct human health relevance pertaining to genetic risk factors and biochemical pathways previously not recognized as germane to induction of HCCs.


Assuntos
DNA Glicosilases/genética , Reparo do DNA , Mutação , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Adutos de DNA , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Estabilidade Enzimática , Escherichia coli , Humanos , Domínios Proteicos , Especificidade por Substrato
14.
DNA Repair (Amst) ; 73: 49-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448017

RESUMO

A variety of agents cause DNA base alkylation damage, including the known hepatocarcinogen aflatoxin B1 (AFB1) and chemotherapeutic drugs derived from nitrogen mustard (NM). The N7 site of guanine is the primary site of alkylation, with some N7-deoxyguanosine adducts undergoing imidazole ring-opening to stable mutagenic N5-alkyl formamidopyrimidine (Fapy-dG) adducts. These adducts exist as a mixture of canonical ß- and unnatural α-anomeric forms. The ß species are predominant in double-stranded (ds) DNA. Recently, we have demonstrated that the DNA glycosylase NEIL1 can initiate repair of AFB1-Fapy-dG adducts both in vitro and in vivo, with Neil1-/- mice showing an increased susceptibility to AFB1-induced hepatocellular carcinoma. Here, we hypothesized that NEIL1 could excise NM-Fapy-dG and that NEIL3, a closely related DNA glycosylase, could excise both NM-Fapy-dG and AFB1-Fapy-dG. Product formation from the reaction of human NEIL1 with ds oligodeoxynucleotides containing a unique NM-Fapy-dG followed a bi-component exponential function under single turnover conditions. Thus, two adduct conformations were differentially recognized by hNEIL1. The excision rate of the major form (∼13.0 min-1), presumed to be the ß-anomer, was significantly higher than that previously reported for 5-hydroxycytosine, 5-hydroxyuracil, thymine glycol (Tg), and AFB1-Fapy-dG. Product generation from the minor form was much slower (∼0.4 min-1), likely reflecting the rate of conversion of the α anomer into the ß anomer. Mus musculus NEIL3 (MmuNEIL3Δ324) excised NM-Fapy-dG from single-stranded (ss) DNA (turnover rate of ∼0.4 min-1), but not from ds DNA. Product formation from ss substrate was incomplete, presumably because of a substantial presence of the α anomer. MmuNEIL3Δ324 could not initiate repair of AFB1-Fapy-dG in either ds or ss DNA. Overall, the data suggest that both NEIL1 and NEIL3 may protect cells against cytotoxic and mutagenic effects of NM-Fapy-dG, but NEIL1 may have a unique role in initiation of base excision repair of AFB1-Fapy-dG.


Assuntos
Adutos de DNA/química , Adutos de DNA/metabolismo , DNA Glicosilases/metabolismo , N-Glicosil Hidrolases/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Animais , Camundongos
15.
Chem Res Toxicol ; 31(9): 924-935, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169026

RESUMO

The most common lesion in DNA occurring due to clinical treatment with Temozolomide or cellular exposures to other methylating agents is 7-methylguanine (N7-Me-dG). It can undergo a secondary reaction to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG). MeFapy-dG undergoes epimerization in DNA to produce either α or ß deoxyribose anomers. Additionally, conformational rotation around the formyl bond, C5- N5 bond, and glycosidic bond may occur. To characterize and quantitate the mixture of these isomers in DNA, a 13C-MeFapy-dG lesion, in which the CH3 group of the MeFapy-dG was isotopically labeled, was incorporated into the trimer 5'-TXT-3' and the dodecamer 5'-CATXATGACGCT-3' (X = 13C-MeFapy-dG). NMR spectroscopy of both the trimer and dodecamer revealed that the MeFapy-dG lesion exists in single strand DNA as ten configurationally and conformationally discrete species, eight of which may be unequivocally assigned. In the duplex dodecamer, the MeFapy-dG lesion exists as six configurationally and conformationally discrete species. Analyses of NMR data in the single strand trimer confirm that for each deoxyribose anomer, atropisomerism occurs around the C5- N5 bond to produce R a and S a atropisomers. Each atropisomer exhibits geometrical isomerism about the formyl bond yielding E and Z conformations. 1H NMR experiments allow the relative abundances of the species to be determined. For the single strand trimer, the α and ß anomers exist in a 3:7 ratio, favoring the ß anomer. For the ß anomer, with respect to the C5- N5 bond, the R a and S a atropisomers are equally populated. However, the Z geometrical isomer of the formyl moiety is preferred. For the α anomer, the E- S a isomer is present at 12%, whereas all other isomers are present at 5-7%. DNA processing enzymes may differentially recognize different isomers of the MeFapy-dG lesion. Moreover, DNA sequence-specific differences in the populations of configurational and conformational species may modulate biological responses to the MeFapy-dG lesion.


Assuntos
Adutos de DNA/toxicidade , DNA/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Cromatografia Líquida de Alta Pressão/métodos , DNA/química , Dano ao DNA , Reparo do DNA , Replicação do DNA , Eletroforese Capilar/métodos , Isomerismo , Conformação de Ácido Nucleico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
Diabetes Technol Ther ; 20(10): 689-692, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30160523

RESUMO

Real-world data from the first 3141 patients who completed 3 months of SmartGuard™ Auto Mode-enabled MiniMed™ 670G system use during the MiniMed 670G System Commercial Launch are reported. CareLink™ system data uploaded by real-world patients in the Commercial Launch from March 17, 2017 to December 31, 2017 were deidentified and analyzed. Comparisons of overall and night (10:00 PM-07:00 AM) time spent below, within, and above target glucose range (TIR) (70-180 mg/dL) between the baseline Manual Mode and closed-loop Auto Mode periods were made. These were evaluated alongside data from the 124 patients (aged 14-75 years) who completed the 3-month MiniMed 670G system pivotal trial (NCT 2463097), from June 2, 2015 to March 7, 2016. Real-world patients used Auto Mode a median 80.8% of the time (19 h and 24 min of the day). The overall mean of time spent in TIR was 66.0% during baseline Manual Mode versus 73.3% during Auto Mode (P < 0.001); the mean percentage of sensor glucose values <70 mg/dL was 2.7% versus 2.1% (P < 0.001); and that >180 mg/dL was 31.4% versus 24.6% (P < 0.001). The nighttime and early morning (03:00 AM-06:00 AM) TIR during Auto Mode was greater than that during baseline Manual Mode (nighttime: 77.2% vs. 67.4% [P < 0.001], early morning: 70.9% vs. 84.6% [P < 0.001]). Similar differences between Manual Mode and Auto Mode TIR were observed across different age groups. A slight increase in total insulin delivered was also observed. Consistent with improved glycemic control demonstrated in the pivotal trial, analysis of CareLink system data from >3000 real-world patients who completed 3 months of Auto Mode-enabled MiniMed 670G system use demonstrated increased TIR and decreased time below and above TIR compared with baseline. These improved clinical outcomes were observed across a broad age range of patients with type 1 diabetes.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Insulina/uso terapêutico , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
17.
Proc Natl Acad Sci U S A ; 114(16): 4207-4212, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373545

RESUMO

Global distribution of hepatocellular carcinomas (HCCs) is dominated by its incidence in developing countries, accounting for >700,000 estimated deaths per year, with dietary exposures to aflatoxin (AFB1) and subsequent DNA adduct formation being a significant driver. Genetic variants that increase individual susceptibility to AFB1-induced HCCs are poorly understood. Herein, it is shown that the DNA base excision repair (BER) enzyme, DNA glycosylase NEIL1, efficiently recognizes and excises the highly mutagenic imidazole ring-opened AFB1-deoxyguanosine adduct (AFB1-Fapy-dG). Consistent with this in vitro result, newborn mice injected with AFB1 show significant increases in the levels of AFB1-Fapy-dG in Neil1-/- vs. wild-type liver DNA. Further, Neil1-/- mice are highly susceptible to AFB1-induced HCCs relative to WT controls, with both the frequency and average size of hepatocellular carcinomas being elevated in Neil1-/- The magnitude of this effect in Neil1-/- mice is greater than that previously measured in Xeroderma pigmentosum complementation group A (XPA) mice that are deficient in nucleotide excision repair (NER). Given that several human polymorphic variants of NEIL1 are catalytically inactive for their DNA glycosylase activity, these deficiencies may increase susceptibility to AFB1-associated HCCs.


Assuntos
Aflatoxinas/toxicidade , Carcinoma Hepatocelular/prevenção & controle , Adutos de DNA/efeitos dos fármacos , DNA Glicosilases/fisiologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Substâncias Protetoras/farmacologia , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Feminino , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Venenos/toxicidade
18.
Proc Natl Acad Sci U S A ; 113(48): 13774-13779, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849610

RESUMO

Routine dietary consumption of foods that contain aflatoxins is the second leading cause of environmental carcinogenesis worldwide. Aflatoxin-driven mutagenesis is initiated through metabolic activation of aflatoxin B1 (AFB1) to its epoxide form that reacts with N7 guanine in DNA. The resulting AFB1-N7-dG adduct undergoes either spontaneous depurination or imidazole-ring opening yielding formamidopyrimidine AFB1 (AFB1-Fapy-dG). Because this latter adduct is known to persist in human tissues and contributes to the high frequency G-to-T mutation signature associated with many hepatocellular carcinomas, we sought to establish the identity of the polymerase(s) involved in processing this lesion. Although our previous biochemical analyses demonstrated the ability of polymerase ζ (pol ζ) to incorporate an A opposite AFB1-Fapy-dG and extend from this mismatch, biological evidence supporting a unique role for this polymerase in cellular tolerance following aflatoxin exposure has not been established. Following challenge with AFB1, survival of mouse cells deficient in pol ζ (Rev3L-/-) was significantly reduced relative to Rev3L+/- cells or Rev3L-/- cells complemented through expression of the wild-type human REV3L. Furthermore, cell-cycle progression of Rev3L-/- mouse embryo fibroblasts was arrested in late S/G2 following AFB1 exposure. These Rev3L-/- cells showed an increase in replication-dependent formation of γ-H2AX foci, micronuclei, and chromosomal aberrations (chromatid breaks and radials) relative to Rev3L+/- cells. These data suggest that pol ζ is essential for processing AFB1-induced DNA adducts and that, in its absence, cells do not have an efficient backup polymerase or a repair/tolerance mechanism facilitating survival.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Neoplasias Hepáticas/genética , Aflatoxina B1/análogos & derivados , Aflatoxina B1/genética , Aflatoxina B1/toxicidade , Aflatoxinas/toxicidade , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Sobrevivência Celular/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Citidina/análogos & derivados , Citidina/genética , Citidina/toxicidade , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , DNA Polimerase Dirigida por DNA/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Mutação
19.
Chembiochem ; 17(21): 2033-2037, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27556902

RESUMO

The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP.


Assuntos
Benzo(a)Antracenos/metabolismo , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Benzo(a)Antracenos/química , Adutos de DNA/química , DNA Polimerase Dirigida por DNA/química , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular
20.
Chem Res Toxicol ; 28(12): 2253-66, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26641105

RESUMO

3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-dG-ABA and N(2)-dG-ABA adducts with respect to susceptibility to nucleotide excision repair (NER).


Assuntos
Benzo(a)Antracenos/química , Adutos de DNA/química , Desoxiguanosina/química , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...